Repeating Spatial Activations in Human Entorhinal Cortex
نویسندگان
چکیده
منابع مشابه
Repeating Spatial Activations in Human Entorhinal Cortex
The ability to remember and navigate spatial environments is critical for everyday life. A primary mechanism by which the brain represents space is through hippocampal place cells, which indicate when an animal is at a particular location. An important issue is understanding how the hippocampal place-cell network represents specific properties of the environment, such as signifying that a parti...
متن کاملSpatial representation in the entorhinal cortex.
As the interface between hippocampus and neocortex, the entorhinal cortex is likely to play a pivotal role in memory. To determine how information is represented in this area, we measured spatial modulation of neural activity in layers of medial entorhinal cortex projecting to the hippocampus. Close to the postrhinal-entorhinal border, entorhinal neurons had stable and discrete multipeaked plac...
متن کاملSpatial and memory circuits in the medial entorhinal cortex
The large capacity of episodic memory is thought to be supported by the emergence of distinct hippocampal cell assemblies for unrelated memories, such that interference is minimized. In large-scale population recordings, the orthogonal nature of hippocampal representations across environments is evident in the complete reorganization of the firing locations of hippocampal place cells. Entorhina...
متن کاملVestibular control of entorhinal cortex activity in spatial navigation
Navigation in rodents depends on both self-motion (idiothetic) and external (allothetic) information. Idiothetic information has a predominant role when allothetic information is absent or irrelevant. The vestibular system is a major source of idiothetic information in mammals. By integrating the signals generated by angular and linear accelerations during exploration, a rat is able to generate...
متن کاملFunctional subregions of the human entorhinal cortex
The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Biology
سال: 2015
ISSN: 0960-9822
DOI: 10.1016/j.cub.2015.02.045